e (nombre)

Un article de Wikipédia, l'encyclopédie libre.

Pour les articles homonymes, voir E.

La constante mathématique e est la base des logarithmes naturels, dont l'expression décimale commence par :

e ≈ 2,718 281 828 459 045 235 360 287 4...

Appellation :

  • e est parfois appelée constante de Néper, du nom du mathématicien écossais John Napier qui introduisit les logarithmes.
  • e fut appelé nombre exponentiel par Euler en 1761.

Article d'une série sur
La constante mathématique e

Logarithme naturel

Applications : Intérêts composés · Identité d'Euler et Formule d'Euler · Demi-vie et Croissance exponentielle/Décroissance exponentielle

Définitions : Démonstration de l'irrationalité de e · Représentations de e · Théorème de Lindemann-Weierstrass

Personnes : John Napier · Jacques Bernoulli · Leonhard Euler

Conjecture de Schanuel

Sommaire

[modifier] Considérations historiques

Le nombre e est probablement la constante réelle la plus importante des mathématiques après π : on la retrouve en effet dans la normalisation des fonctions exponentielles. Il est cependant difficile de dater avec exactitude son apparition dans la littérature. En effet, si Neper introduit les logarithmes comme artifice de calcul pour simplifier les calculs du sinus, du cosinus, du produit et du quotient, il ne précise pas de base particulière pour ces logarithmes et les logarithmes les plus courants à cette époque sont ceux en base 10.

Les logarithmes naturels apparaissent pour la première fois en 1618 en appendice d'un traité de Napier probablement rédigé par William Oughtred.

En 1624, Briggs donne l'approximation du logarithme décimal d'un nombre qu'il n'identifie pas avec précision, mais qui se révèle être e.

En 1647, Grégoire de Saint-Vincent calcule l'aire sous l'hyperbole, mais ne met pas en évidence le nombre e.

En 1661, Huygens est capable de faire le rapprochement entre l'aire sous l'hyperbole et les fonctions logarithmes. Comme e est le réel tel que l'aire sous l'hyperbole entre 1 et e vaille 1, il est probable que ce nombre fut remarqué à cette époque sans toutefois que l'on parle pour lui de la base du logarithme naturel.

La première apparition de e comme nombre remarquable date de 1683, époque à laquelle Bernoulli s'intéresse aux calculs d'intérêt. Ce qui l'amène à étudier la limite de la suite (1 + 1 / n)n. Mais personne à ce moment ne fait le rapprochement entre ce nombre et les logarithmes naturels. Pourtant c'est durant cette période que l'on commence à entrevoir que la fonction logarithme de base a est la réciproque de la fonction exponentielle de base a. La communauté scientifique est alors mûre pour découvrir e. C'est dans une lettre de Leibniz à Huygens que ce nombre est enfin identifié comme la base du logarithme naturel, mais Leibniz lui donne le nom de b.

On doit la notation e pour cette constante à Euler dans une lettre que celui-ci adresse à Goldbach en 1731. Le choix de e a donné lieu a de nombreuses conjectures : e pour Euler ? e pour exponentielle ? ou tout simplement e comme première voyelle disponible dans le travail d'Euler.

C'est aussi Euler qui donne le développement de e en série

 e = 1 + \frac{1}{1!} + \frac{1}{2!} + \cdots + \frac{1}{k!}+ \cdots

et en fraction continue :

e=2+\frac{1}{1+\frac{1}{2+\frac{1}{1+\frac{1}{1+\frac{1}{4+\frac{1}{1+\frac{1}{1+\frac{1}{6+\ldots}}}}}}}}

Puisque e possède un développement en fraction continue infini, il est irrationnel. Le calcul de la fraction continue de e est proposée dans l'article Fraction continue. La démonstration, plus complexe que celle proposée dans cet article, est un peu plus générale, elle permet en effet de démontrer que ex est irrationnel si x est rationnel.

C'est Charles Hermite qui, en 1873, prouve que e est transcendant.

[modifier] Définitions et propriétés

[modifier] Définitions de e

Les considérations précédentes montrent que e peut être défini de plusieurs façons différentes

  • e est le réel tel que ln(e) = 1 lorsqu'on définit la fonction ln comme la primitive de la fonction x \to \tfrac{1}{x} qui s'annule en 1. C'est la raison pour laquelle cette constante est aussi appelée la base des logarithmes naturels
  • e est le réel tel que exp(1) = e lorsqu'on définit la fonction exp comme l'unique fonction vérifiant u' = u et u(0) = 1.
  • e est la limite de la suite (1 + \tfrac 1n)^n.
  • e est égal à la série infinie \textstyle\sum_{k=0}^\infty \frac{1}{k!} (avec la convention 0! = 1).

L'équivalence de ces quatre définitions provient des relations qui lient la fonction exponentielle, la fonction logarithme et les limites de suites.

[modifier] Théorie des nombres

La constante de Néper apparaît largement dans la théorie des nombres. Les mathématiciens se sont très tôt intéressés à la nature du nombre e. L'irrationalité de e fut démontrée par Lambert en 1761 et plus tard par Euler. La démonstration peut se faire grâce à son développement en série (voir Démonstration de l'irrationalité de e) soit par son développement en fraction continue.

La preuve de la transcendance de e fut établie par Hermite en 1873. On en déduit que, pour tout rationnel r (qui inclut les entiers naturels), et er est aussi transcendant, mais on ne sait pas encore (2007) si ee est transcendant ou non.

Les propriétés de ce nombre sont à la base du théorème de Lindemann-Weierstrass.

Il a été conjecturé que e était un nombre normal.

[modifier] Fonction exponentielle et équation différentielle

Pour tout réel x, exp(x) = exexp est l'unique fonction y vérifiant l'équation différentielle y' = y et y(0) = 1. Cette fonction est appelée fonction exponentielle de base e.

Elle permet de donner toutes les solutions de l'équation différentielle y' = ay qui sont les fonctions définies par f(x) = Ceax.

[modifier] Fonction trigonométrique

La recherche de l'unique solution complexe à l'équation différentielle u' = iu et u(0) = 1 conduit à la fonction u(x) = eix = cos(x) + isin(x) et à l'identité d'Euler :

eiπ + 1 = 0

qui selon Richard Feynman est « la formule la plus remarquable du monde » (e représentant l'analyse, i l'algèbre, π la géométrie, 1 l'arithmétique et le nombre 0 les mathématiques). Euler lui-même aurait également été émerveillé de cette relation rassemblant cinq nombres fondamentaux : 0, 1, e, i, π.

[modifier] Démonstration de l'irrationalité de e

Le nombre e est égal à la somme de la série de l'exponentielle de 1 :

e = \sum_{n = 0}^{\infty} \frac{1}{n!}

Ce développement peut être employé pour montrer qu'il est irrationnel.

Démonstration, par l'absurde. Supposons qu'il existe deux entiers a et b tels que e=\tfrac{a}{b}, où a est strictement positif et b strictement supérieur à 1. Considérons le nombre

x = b\,!\left(e - \sum_{n = 0}^{b} \frac{1}{n!}\right)

Nous allons démontrer que x est un nombre entier strictement positif et strictement inférieur à 1, et cette contradiction établira l'irrationalité de e.

  • Pour voir que x est un nombre entier, remarquons que
x = b\,!\left(e - \sum_{n = 0}^{b} \frac{1}{n!}\right) = b\,!\left(\frac{a}{b} - \sum_{n = 0}^{b} \frac{1}{n!}\right)= a \frac{b!}{b} - \sum_{n = 0}^{b} \frac{b!}{n!}
Or, b divise b! et, pour tout entier n compris entre 0 et b, n! divise b!, les quantités \tfrac{b!}{b} et \tfrac{b!}{n!} sont donc entières, x est donc entier comme somme et différence d'entiers.
  • Pour voir que x est un nombre strictement positif et strictement inférieur à 1, remarquons que
x = b\,!\sum_{n = b+1}^{\infty} \frac{1}{n!} et ainsi
0 < x = \frac{1}{b+1} + \frac{1}{(b+1)(b+2)} + \frac{1}{(b+1)(b+2)(b+3)} + \cdots
< \frac{1}{b+1} + \frac{1}{(b+1)^2} + \frac{1}{(b+1)^3} + \cdots = \frac{1}{b} \ < 1
Ici, la dernière somme est une série géométrique de raison \frac{1}{b+1}.

Puisqu'il n'existe aucun nombre entier strictement positif et strictement inférieur à 1, nous avons obtenu une contradiction, et ainsi e doit être irrationnel. CQFD

Une autre démonstration consiste à établir le développement en fraction continue du nombre e. Si la preuve est plus complexe, elle est aussi plus riche d'enseignement. Elle permet de montrer que si x est un nombre rationnel, alors ex est irrationnel. Elle permet aussi d'établir que e n'est pas un irrationnel quadratique, c'est à dire n'est solution d'aucune équation du second degré à coefficients rationnels (cf Fraction continue). En revanche, pour aller plus loin, c'est à dire que pour montrer que e n'est solution d'aucune équation du troisième degré à coefficients rationnels, puis qu'il est transcendant, ce qui signifie qu'il n'est solution d'aucune équation polynomiale à coefficients rationnels, de nouvelles idées sont nécessaires.

[modifier] Voir aussi

Notion de nombre
Ensembles usuels Extensions

ℕ ensemble des entiers naturels
ℤ groupe des entiers relatifs
D ensemble des décimaux
ℚ corps des rationnels
ℝ corps des réels
ℂ corps des complexes

ℍ algèbre des quaternions
O algèbre des octonions
S algèbre des sédénions
autres hypercomplexes
p corps des p-adiques
hyperréels et superréels
ordinaux et cardinaux
surréels et pseudoréels

\scriptstyle\mathbb{N}\ \sub\ \mathbb{Z}\ \sub\ \mathbb{D}\ \sub\ \mathbb{Q}\ \sub\ \mathbb{R}\ \sub\ \mathbb{C}

Propriétés particulières

pair ou impair • premier ou composé • carré • parfait
positif ou négatif • dyadique • irrationnel
algébrique ou transcendant • imaginaire pur
nombre de Liouville • normal • univers
constructible • calculable • transfini • infiniment petit

Exemples d'importance historique
π :
2 :
φ :
0 :
i :
e :
0 :
constante d'Archimède
racine carrée de deux
nombre d'or
zéro
unité imaginaire
constante de Neper
aleph-zéro
(≈ 3,141592654…)
(≈ 1,414213562…)
(≈ 1,618033989…)

de carré valant −1
(≈ 2,718281828…)
premier cardinal infini
autres constantes mathématiques
Notions connexes

chiffre • numération • fraction • opération • calcul • algèbre
arithmétique • suite d'entiers • ∞ infini • chiffre significatif

[modifier] Articles connexes

[modifier] Lien externe