Intégrales de Wallis

Un article de Wikipédia, l'encyclopédie libre.

En analyse, les intégrales de Wallis constituent une famille d'intégrales introduites par John Wallis.

Sommaire

[modifier] Définition, premières propriétés

On appelle habituellement intégrales de Wallis les termes de la suite réelle (W_n)_{\,n\, \in\, \mathbb{N}\,} définie par :

 W_n = \int_0^{\frac{\pi}{2}} \sin^n(x)\,dx , ou de façon équivalente (par le changement de variable x = \frac{\pi}{2} - t):
 W_n = \int_0^{\frac{\pi}{2}} \cos^n(x)\,dx

En particulier, les deux premiers termes de cette suite sont :

\quad W_0=\frac{\pi}{2}\qquad \, et \quad W_1=1\,

La suite \ (W_n) est décroissante, à termes strictement positifs. En effet, pour tout n \in\, \mathbb{N} :

  • \ W_n > 0 : c'est l'intégrale d'une fonction continue, positive, et non identiquement nulle sur l'intervalle d'intégration
  • W_{n} - W_{n + 1}= \int_0^{\frac{\pi}{2}} \sin^{n}(x)\,dx - \int_0^{\frac{\pi}{2}} \sin^{n + 1}(x)\,dx = \int_0^{\frac{\pi}{2}} \sin^{n}(x)\, [1 - \sin(x)]\,dx \geqslant 0
(par linéarité de l'intégrale et parce que la dernière intégrale est celle d'une fonction positive sur l'intervalle d'intégration)
Nota : décroissante et minorée (par 0), la suite \ (W_n) converge, et sa limite est positive ou nulle ; en fait, elle est nulle, comme cela résulte de l'équivalent obtenu plus loin.

[modifier] Relation de récurrence, calcul des intégrales de Wallis

Une intégration par parties va permettre d'établir une relation de récurrence intéressante :

En remarquant que pour tout réel x, \quad \sin^2(x) = 1-\cos^2(x), on a pour tout entier naturel n≥2 :

\int_0^{\frac{\pi}{2}} \sin^{n}(x)\,dx = \int_0^{\frac{\pi}{2}} \sin^{n-2}(x) \left[1-\cos^2(x)\right]\,dx
\int_0^{\frac{\pi}{2}} \sin^{n}(x)\,dx = \int_0^{\frac{\pi}{2}} \sin^{n-2}(x)\,dx - \int_0^{\frac{\pi}{2}} \sin^{n-2}(x) \cos^2(x)\,dx (relation \mathbf{(1)})

On intègre alors par parties la seconde intégrale du second membre, en posant:

  • u'(x)=\cos (x) \sin^{n-2}(x) \Rightarrow u(x) = \frac{1}{n-1} \sin^{n-1}(x)
  • v(x)=\cos (x) \Rightarrow v'(x) =  - \sin(x)


\int_0^{\frac{\pi}{2}} \sin^{n-2}(x) \cos^2(x)\,dx = \left[ \frac{1}{n-1} \sin^{n-1}(x) \cos(x)\right]_0^{\frac{\pi}{2}} + \int_0^{\frac{\pi}{2}} \ \frac{1}{n-1} \sin^{n-1}(x) \sin(x)\,dx = 0 + {1\over {n-1}}\,W_{n}


En reportant dans \mathbf{(1)}, on obtient alors:

W_n=W_{n-2} - {1\over {n-1}}\,W_{n}
d'où:
 \qquad \left(1+ \frac{1}{n-1}\right)W_n=W_{n-2} (relation \mathbf{(2)})

Ceci se traduit par la relation bien connue :

n\,W_n = (n-1)\,W_{n-2}\qquad \,, valable pour n \geqslant 2\qquad \,.

On a là une relation de récurrence donnant Wn en fonction de Wn − 2, c'est à dire le n-ième terme de la suite en fonction du (n-2)-ième. De cette relation et des valeurs de W0 et W1, on tire une expression des termes de la suite, selon la parité de leur rang. Ainsi :

  • pour \quad n=2\,p, \quad W_{2\,p}=\frac{2\,p-1}{2\,p}\times\frac{2\,p-3}{2\,p-2}\times\cdots\times\frac{1}{2}\,W_0=\frac{2\,p}{2\,p}\times\frac{2\,p-1}{2\,p}\times\frac{2\,p-2}{2\,p-2}\times\frac{2\,p-3}{2\,p-2}\times\cdots\times\frac{2}{2}\times\frac{1}{2}\,W_0 = \frac{(2\,p)!}{2^{2\,p}\, (p!)^2} \frac{\pi}{2}
  • pour \quad n=2\,p+1, \quad W_{2\,p+1}=\frac{2\,p}{2\,p+1}\,\frac{2\,p-2}{2\,p-1}\cdots\frac{2}{3}\,W_1=\frac{2^{2\,p}\, (p!)^2}{(2\,p +1)!}~

On remarque que les termes de rang pair sont irrationnels, tandis que ceux de rang impair sont rationnels.

[modifier] Un équivalent de la suite des intégrales de Wallis

  • De la formule de récurrence précédente \mathbf{(2)}, on déduit d'abord que :
\ W_{n + 1} \sim W_n (équivalence de deux suites).
En effet, pour tout n \in\, \mathbb{N} :
\ W_{n + 2} \leqslant W_{n + 1} \leqslant W_n (la suite étant décroissante) donc :
\frac{W_{n + 2}}{W_n} \leqslant \frac{W_{n + 1}}{W_n} \leqslant 1 (puisque \ W_n > 0), ce qui s'écrit :
\frac{n + 1}{n + 2} \leqslant \frac{W_{n + 1}}{W_n} \leqslant 1 (d'après la relation \mathbf{(2)}).
Par encadrement, on conclut que \frac{W_{n + 1}}{W_n} \to 1, soit \ W_{n + 1} \sim W_n.
  • Puis on établit l'équivalence suivante :
W_n \sim \sqrt{\frac{\pi}{2\, n}}\quad ( soit encore \quad\lim_{n \rightarrow \infty} \sqrt n\,W_n=\sqrt{\pi /2}\quad ).


[modifier] Application à la formule de Stirling

On suppose connue l'équivalence suivante (établie dans l'article sur la formule de Stirling):

\ n\,! \sim C\, \sqrt{n}\left(\frac{n}{\mathrm{e}}\right)^n, où \ C \in \R^*.

On se propose maintenant de déterminer la constante \ C à l'aide d'équivalents de W_{2\, p}.

  • Du paragraphe précédent résulte l'équivalence :
W_{2\, p} \sim \sqrt{\frac{\pi}{4\, p}} = \frac{\sqrt{\pi}}{2}\, \frac{1}{\sqrt{p}} (relation \mathbf{(3)})
  • Par ailleurs, en utilisant l'équivalent de la factorielle donné supra :
W_{2\,p}=\frac{(2\,p)!}{2^{2\,p}\, (p\,!)^2}\, \frac{\pi}{2} \sim \frac{C\, \left(\frac{2\, p}{\mathrm{e}}\right)^{2p}\, \sqrt{2\, p}}{2^{2p}\, C^2\,  \left(\frac{p}{\mathrm{e}}\right)^{2p}\, \left(\sqrt{p}\right)^2}\, \frac{\pi}{2} , soit :
W_{2\,p} \sim \frac{\pi}{C\, \sqrt{2}}\, \frac{1}{\sqrt{p}} (relation \mathbf{(4)})
Des équivalences \mathbf{(3)} et \mathbf{(4)}, on déduit par transitivité :
\frac{\pi}{C\, \sqrt{2}}\, \frac{1}{\sqrt{p}} \sim \frac{\sqrt{\pi}}{2}\, \frac{1}{\sqrt{p}}, d'où :
\frac{\pi}{C\, \sqrt{2}} = \frac{\sqrt{\pi}}{2}, et enfin C = \sqrt{2\, \pi}.
On a ainsi établi la formule de Stirling dans sa version définitive :
\ n\,! \sim \sqrt{2\, \pi\, n}\, \left(\frac{n}{\mathrm{e}}\right)^n.

[modifier] Application au calcul de l'intégrale de Gauss

On peut aisément utiliser les intégrales de Wallis pour calculer l'intégrale de Gauss.

Vérifions d'abord les inégalités suivantes:

  • \forall n\in \mathbb N^* \quad \forall u\in\mathbb R_+ \quad u\leqslant n\quad\Rightarrow\quad (1-u/n)^n\leqslant e^{-u}
  • \forall n\in \mathbb N^* \quad \forall u \in\mathbb R_+ \qquad e^{-u} \leqslant  (1+u/n)^{-n}

En effet en posant \quad u/n=t la première inégalité (pour laquelle t \in [0,1]) équivaut à 1-t\leqslant e^{-t}. Quant à la seconde elle s'écrit e^{-t}\leqslant (1+t)^{-1}, ce qui revient à e^t\geqslant 1+t . Ces 2 inégalités sont des conséquences immédiates de la convexité de la fonction exponentielle (ou si l'on préfère de l'étude de la fonction t \mapsto e^t -1 -t).

Posant alors u = x2 et utilisant les propriété élémentaires des intégrales ("impropres") (la convergence des intégrales est immédiate) on obtient l'encadrement:

 \int_0^{\sqrt n}(1-x^2/n)^n dx \leqslant \int_0^{\sqrt n} e^{-x^2} dx \leqslant \int_0^{+\infty} e^{-x^2} dx \leqslant \int_0^{+\infty} (1+x^2/n)^{-n} dx.

Or les intégrales d'encadrement se ramènent facilement à des intégrales de Wallis. Pour celle de gauche il suffit de poser  x=\sqrt n\, \sin\,t (t variant de 0 à π / 2) et elle s'écrit \sqrt n \,W_{2n+1}. Quant à celle de droite, on peut poser x=\sqrt n\, \tan\,  t (t variant de 0 à π / 2) qui donne \sqrt n \,W_{2n-2}.

Comme on a vu que  \lim_{n\rightarrow +\infty} \sqrt n\;W_n=\sqrt{\pi /2}, on en déduit que \int_0^{+\infty} e^{-x^2} dx = \sqrt{\pi} /2.

Remarque: Il existe bien d'autres méthodes de calcul de l'intégrale de Gauss, dont une méthode bien plus directe.

[modifier] Nota

Les mêmes propriétés conduisent au produit de Wallis, qui exprime \frac{\pi}{2}\, (voir π) sous forme d'un produit infini.