Groupe sporadique

Un article de Wikipédia, l'encyclopédie libre.

La classification des groupes finis simples, aussi appelée "le théorème énorme", est un vaste corps de travail en mathématiques, principalement publié entre environ 1955 et 1983, qui a pour but de classer tous les groupes simples finis. En tout, le travail comprend des dizaines de milliers de pages dans 500 articles par plus de 100 auteurs.

Sommaire

[modifier] La classification

Dans l'étude de la classification des groupes finis simples, les mathématiciens ont été amenés à découvrir des êtres mathématiques inattendus qu'ils appelèrent des groupes sporadiques pour marquer ce qu'ils ont d'inhabituel. Si elle est correcte, la classification montre que chaque groupe fini simple est de l'un des types suivants :

Le théorème a des applications répandues dans beaucoup de branches de mathématiques, comme les questions sur les groupes finis peuvent souvent être réduites à des questions sur les groupes finis simples, qui par la classification peuvent être réduits à une énumération de cas.

Quelquefois le groupe de Tits est regardé comme un groupe sporadique (dans ce cas, il existe 27 groupes sporadiques) parce qu'il n'est pas à strictement parler un groupe de type de Lie.

Le plus petit des groupes sporadiques, mis en évidence par Emile Mathieu (1835-1890), possède 24.32.5.11=7 920 éléments. Le plus gros groupe sporadique est le monstre de Fischer et il possède 246.320.59.76.112.133.17.19.23.29.31.41.47.59.71 soit à peu près 8.1053 éléments. L'arrivée de l'ordinateur a été déterminante dans l'identification de ces groupes.

[modifier] Liste des groupes sporadiques

Cinq des groupes sporadiques ont été découverts par Mathieu dans les années 1860 et les 21 autres entre 1965 et 1975. L'existence de plusieurs de ces groupes avait été conjecturée avant leur construction effective. La plupart des groupes sporadiques portent le nom du ou des mathématicien(s) qui ont montré leur existence en premier. Voici la liste complète :

Les représentations sur les corps finis de tous les groupes sporadiques ont été calculées, excepté pour le groupe Monstre.

Des 26 groupes sporadiques, 20 d'entre eux peuvent être vus à l'intérieur du groupe Monstre comme des sous-groupes ou quotients de sous-groupes. Les 6 exceptions sont J_1\,, J_3\,, J_4\,, O'N\,, Ru\, et Ly\,. Ces 6 groupes sont quelque fois connus sous le nom de parias.

Jusqu'ici, il y a eu peu de progrès dans l'apport d'une unification convaincante des groupes sporadiques.

[modifier] Scepticisme restant sur la démonstration

Certains doutes persistent si ces articles fournissent une démonstration complète et correcte, en raison de la longueur, de la complexité du travail publié et du fait que des parties de la démonstration supposée restent non-publiées. Jean-Pierre Serre est un sceptique notable de la réclamation d'une démonstration.

Pendant plus d'une décennie, les experts ont connu un "trou sérieux" (en accord avec Michael Aschbacher) dans la classification (non-publiée) des groupes quasi-minces(?) due à Geoff Mason. Gorenstein annonça la classification des groupes finis simples en 1983, basée en partie sur l'impression que le cas quasi-mince était achevé. Aschbacher remplit ce trou au début des années 1990, aussi non-publié. Aschbacher et Steve Smith ont publié une démonstration différente comprenant deux volumes d'environ 1 300 pages.

[modifier] Une classification de deuxième génération

À cause de l'extrême longueur de la démonstration de classification des groupes simples finis, il y a eu beaucoup de travaux, appelés "révisionnisme", originellement conduits par Daniel Gorenstein, dans la recherche d'une démonstration plus simple. C'est ce que l'on a appelé la démonstration de classification de deuxième génération.

Six volumes ont été publiés en 2005 et les manuscrits existent pour la plupart du reste. Les deux volumes d'Aschbacher et de Smith ont été écrits pour fournir une démonstration pour le cas quasi-mince qui marcherait avec la démonstration de première et deuxième génération. Il a été estimé que la nouvelle démonstration serait approximativement de 5 000 pages lorsqu'elle sera complète. Les nouvelles démonstrations ont été écrites dans un style plus généreux.

Gorenstein et ses collaborateurs ont donné plusieurs raisons pour lesquelles une démonstration plus simple était possible. La plus importante est que l'énoncé final et correct est maintenant connu. Les techniques qui peuvent être appliquées seront suffisantes pour les groupes actuels. Par contraste, pendant la démonstration originale, personne ne savait combien de groupes sporadiques existaient, et en fait, certains (par exemple, les groupes de Janko) ont été découvert dans le processus d'essai de démonstration des cas du théorème de classification. En conséquence, des techniques extrêmement générales ont été appliquées.

De nouveau, parce que la conclusion finale était inconnue pendant une longue période et on ne l'imaginait même pas, la démonstration originale consista en beaucoup de théorèmes complets séparés, classifiant les cas particuliers importants. La plus grosse partie du travail a été consacrée à l'analyse d'un grand nombre de cas particuliers. En tant qu'éléments d'une plus grande démonstration, bon nombre de ces cas particuliers ont pu être postposés jusqu'à ce que des propositions plus puissantes puissent être appliquées. Le prix payé de cette révision est que les théorèmes de première génération n'ont plus de démonstrations courtes mais ils dépendent de la classification complète.

Bon nombre des théorèmes de la première génération se recouvraient ce qui divisait les cas possibles de façon inefficace. La démonstration révisée relie les différentes subdivisions de cas, éliminant ces redondances.

Finalement, les théoriciens des groupes finis ont acquis plus d'expérience et de nouvelles techniques plus efficaces.

[modifier] Références

Autres langues