Variété pseudo-riemannienne

Un article de Wikipédia, l'encyclopédie libre.

La géométrie pseudo-riemannienne est une extension de la géométrie riemannienne ; au même titre que, en algèbre bilinéaire, l'étude des formes bilinéaires symétriques généralisent les considérations sur les métriques euclidiennes. Cependant, cette géométrie présente des aspects non intuitifs des plus surprenants.

[modifier] Définition formelle

Une métrique pseudo-riemannienne sur une variété différentielle M de dimension n est une famille g={gx} de formes bilinéaires symétriques non dégénérées sur les espaces tangents TxM de signature constante (p,q). La donnée (M,g) est appelée variété pseudo-riemannienne. La géométrie pseudo-riemannienne est l'étude de ces structures, de leurs particularités et des relations qu'elles entretiennent entre elles.

Les variétés pseudo-riemanniennes représentent une classe importante de variétés différentielles, regroupant en particulier les variétés riemanniennes et les variétés lorentziennes :

  • Une variété pseudo-riemannienne est riemannienne lorsque la signature est (n,0) ou (0,n).
    Icône de détail Article détaillé : géométrie riemannienne.
  • Une métrique pseudoriemmannienne est dite lorentzienne lorsque la signature est (n-1,1) et (1,n-1).
    Icône de détail Article détaillé : géométrie lorentzienne.

[modifier] Résultats

Comme en géométrie riemmannienne, il existe une mesure naturelle v sur toute variété pseudo-riemannienne (M,g), localement donnée par l'unique forme volume valant 1 sur toute base pseudo-orthonormée. Si la variété est orientable, la forme volume est globalement définie.

De plus, il existe une unique connexion, appelée connexion de Levi-Cevita, sans torsion, et métrique, au sens où, pour tous champs de vecteurs X, Y et Z, on a :

 Z\cdot g(X,Y)=g(\nabla_ZX,Y)+g(X,\nabla_XZ)

Les géodésiques sont les courbes c vérifiant :

\nabla_{c'}c'=0

L'existence d'une connexion de Levi-Cevita implique les conséquences de rigidité suivantes :

  • Une isométrie f d'une variété pseudo-riemannienne (M,g), fixant un point m, et telle que df(x) = Id, est l'identité.
  • Le groupe d'isométrie d'une variété pseudo-riemannienne de dimension n est un groupe de Lie de dimension finie, au plus n(n + 1) / 2. La classification des variétés pseudo-riemanniennes pour lesquelles l'égalité est vérifiée est connue.

Malheureusement, la norme d'un vecteur n'est pas définie. La particularité de la géométrie riemannienne est qu'elle est à la croisée des géométries pseudo-riemanniennes et des géométries de Finsler. Elle bénéficie donc d'une distance.

En particulier, la notion de complétude d'une variété pseudo-riemannienne se définit sur des propriétés dynamiques.

Une variété pseudo-riemannienne (M,g) est complète lorsque toutes ses géodésiques se définissent sur R ou, de manière équivalente, lorsque le flot géodésique est complet. L'un des miracles de la géométrie riemannienne est que la compacité implique la complétude. La situation est différente en géométrie pseudo-riemannienne : le théorème de Marsden donne des conditions supplémentaires pour obtenir la complétude.

[modifier] Voir aussi