Théorème des suites adjacentes

Un article de Wikipédia, l'encyclopédie libre.

Le théorème des suites adjacentes concerne les suites réelles et précise que deux suites adjacentes convergent vers la même limite.

[modifier] Définition et énoncé

Définition:

les suites (an) et (bn) sont dites adjacentes si l'une des suites est croissante (au sens large), l'autre suite décroissante au sens large et si la différence des deux tend vers 0.

On supposera par la suite que (an) est croissante et (bn) est décroissante.

On trouve souvent la condition supplémentaire : pour tout entier n, a_n \leq b_n. Cette condition permet de mieux visualiser ce que représentent deux suites adjacentes, elle n'est cependant qu'une conséquence des deux autres conditions.

si (an) est croissante et (bn) décroissante alors (bnan) est décroissante. Si la suite (bnan) est décroissante et converge vers 0 alors (bnan) est une suite à termes positifs. Donc, pour tout n, b_n - a_n \geq 0 donc b_n \geq a_n.

Le théorème des suites adjacentes stipule que , dans ces conditions, les suites convergent vers le même réel \ell et que, pour tout entier n, a_n \leq \ell \leq b_n.

Ce théorème est une conséquence de la propriété de la borne supérieure: tout ensemble de réels non vide et majoré possède une borne supérieure. Ce théorème n'est donc pas valable si on travaille dans l'ensemble des rationnels et que l'on cherche une limite rationnelle. On démontre même que cette propriété est équivalente à celle de la borne supérieure. Elle offre l'avantage, par rapport à la propriété des suites croissantes majorées, de faire plus que prouver la convergence d'une suite. Elle en donne un encadrement aussi fin qu'on le souhaite.


[modifier] Utilisation

On rencontre le théorème des suites adjacentes dans tous les problèmes utilisant la méthode de la dichotomie, dans le développement décimal d'un réel, dans l'écriture en fraction continue ainsi que dans de nombreux problèmes de quadrature (quadrature du cercle, de la parabole).

On retrouve une variante des suites adjacentes dans le critère de Leibniz sur les séries alternées : si (un) est une suite à termes positifs décroissante et convergeant vers 0, la série S_n= \sum_0^n (-1)^ku_k converge.

En effet, les suites (an) et (bn) définies par bn = S2n et an = S2n + 1 sont des suites adjacentes qui convergent donc vers la même limite \ell.