Lemme de recouvrement de Vitali

Un article de Wikipédia, l'encyclopédie libre.

Le lemme de recouvrement de Vitali est un résultat combinatoire de théorie de l'intégration des espaces euclidiens. Il est largement utilisé dans des démonstrations en analyse réelle.

L'idée basique du lemme est la suivante: supposons que l'on ait une collection de cercles dans le plan, autorisés à se superposer. Alors il est possible d'en extraire une sous-collection dont les cercles ne s'intersectent pas, et si l'on multiplie par 3 leurs rayons, ces cercles recouvrent la collection initiale.

Sommaire

[modifier] Enoncé

  • Version finie: Soit B1,...,Bn une collection de boules de dimension d dans un espace euclien de dimension d  \mathbb{R}^{d}. Alors, il existe une sous-collection disjointe  B_{j_{1}},B_{j_{2}},...,B_{j_{m}} de ces boules satisfaisant
 B_{1}\cup B_{2}\cup\cdots \cup B_{n}\subseteq 3B_{j_{1}}\cup 3B_{j_{2}}\cup\cdots \cup 3B_{j_{m}}

 3B_{j_{k}} dénotant la boule de même centre que B_{j_{k}} mais ayant 3 fois son rayon.

  • Version infinie: Soit {Bj} une collection infinie (dénombrable ou non) de boules de dimension d dans un espace euclien de dimension d  \mathbb{R}^{d}. Alors, il existe une sous-collection dénombrable de boules disjointes  \{B_{j_{k}}\}_{k=1}^{\infty} de la collection initiale avec
 \bigcup_{j} B_{j}\subseteq \bigcup_{k=1}^{\infty} 3B_{j_{k}}.

[modifier] Preuve

  • Dans la version finie :

[modifier] Applications

Une application directe du lemme de recouvrement de Vitali permet de prouver l'inégalité maximale de Hardy-Littlewood. Comme dans cette preuve, le lemme de Vitali est fréquemment utilisé lorsque, par exemple, on étudie la mesure de Lebesgue, m, d'un ensemble E\subseteq\mathbb{R}^{d}, que l'on sait être contenu dans l'union d'une certaine collection de boules {Bj}, chacune d'entre elles ayant une mesure pouvant être calculée aisément, ou ayant une propriété particulière que l'on souhaite exploiter. Donc, si l'on calcule la mesure de cette union, on aura une borne supérieure de la mesure de E. Cependant, il est difficile de calculer la mesure de l'union de ces boules si elles se superposent. Avec les théorème de Vitali, on peut choisir une sous-collection  \{B_{j_{k}}\} disjointe. Alors, en triplant leur rayon, cette subcollection transformée contiendra le volume occupé par la collection de boules originale, et donc couvrira E. On a donc,

 m(E)\leq m\left(\bigcup_{j}B_{j}\right) \leq m\left(\bigcup_{k}3B_{j_{k}}\right)\leq \sum_k m(3B_{j_{k}})

Comme on triple le rayon d'une boule de dimension d revient à multiplier son volume par un facteur de 3d, on a:

 \sum_k m(3B_{j_{k}})=3^d \sum_{k} m(B_{j_{k}})

et donc:

 m(E)\leq 3^{d}\sum_{k}m(B_{j_{k}}).

On peut utiliser cette approche en considérant la dimension de Hausdorff à la place de la mesure de Lebesgue. Dans ce cas, on obtient le théorème suivant.

[modifier] Théorème de recouvrement de Vitali

Définition. Pour un ensemble E\subseteq\mathbb{R}^{d}, on définit la classe de Vitali  \mathcal{V} pour E comme étant une collection d'ensembles tel que pour tout x\in E et δ > 0 il existe un ensemble U\in\mathcal{V} tel que x\in U et le diamètre deU est plus petit que δ.

Théoreme. Soit E\subseteq\mathbb{R}^{d} un ensemble Hs-mesurable et \mathcal{V} une classe de Vitali pourE. Alors il existe une collection disjointe, dénombrable \{U_{j}\}\subseteq \mathcal{V} telle que soit

 H^{s}(E\backslash \bigcup_{j}U_{j})=0 \mbox{ ou }\sum_{j}d(U_{j})^{s}=\infty.

De plus, si E à une mesure de Hausdorff finie, alors pour tout ε > 0, on peut choisir cette sous-collection {Uj} telle que

 H^{s}(E)\leq \sum_{j}d(U_{j})^{s}+\epsilon.

[modifier] Sources

  • (en) Cet article est partiellement ou en totalité issu d’une traduction de l’article de Wikipédia en anglais intitulé « Vitali covering lemma ».
  • Measure theory and inegration, Michael E. Taylor, American Mathematical Society.
  • K. J. Falconer, The Geometry of Fractal Sets, Cambridge University Press, 1985.
  • Rami Shakarchi & Elias Stein, Princeton Lectures in Analysis III: Real Analysis, Princeton University Press, 2005.
Autres langues