Théorie de Ramsey

Un article de Wikipédia, l'encyclopédie libre.

La théorie de Ramsey, qui porte le nom de Frank P. Ramsey, pose typiquement une question de la forme : combien d'éléments d'une certaine structure doivent être considérés pour qu'une propriété particulière se vérifie ? Un adage souvent cité sur le sujet est : « le désordre complet est impossible » (T.S. Motzkin).

Sommaire

[modifier] Le principe général

[modifier] Premiers exemples

Le premier exemple de résultat de cette forme est le principe des tiroirs, énoncé par Dirichlet en 1834.

Supposons, par exemple, que n chaussettes soient rangées dans m tiroirs. Existe-t-il une valeur de l'entier n à partir de laquelle nous puissions être sûrs qu' il existe au moins un tiroir contenant au moins deux chaussettes ? La réponse donnée par le principe des tiroirs est que c'est le cas dès que n > m. Le théorème de Ramsey généralise ce principe.

Un résultat typique dans la théorie de Ramsey commence par considérer une certaine structure mathématique, qui est alors découpée en morceaux. Quelle doit être la grandeur de la structure d'origine afin d'assurer qu'au moins un des morceaux possède une certaine propriété ?

Par exemple, considérons un graphe complet d'ordre n, c'est-à-dire ayant n sommets reliés à chaque autre sommet par un segment. Un graphe complet d'ordre 3 s'appelle un triangle. Colorons maintenant chaque côté en rouge ou bleu. Quelle grandeur n doit-il avoir afin d'assurer l'existence d'au moins un triangle bleu ou un triangle rouge ? Il se trouve que la réponse est 6. Voyez l'article sur le théorème de Ramsey pour une démonstration rigoureuse. Ce résultat peut s'exprimer autrement de la manière suivante : à une soirée à laquelle se rendent au moins six personnes, il y a au moins trois personnes qui se connaissent mutuellement ou au moins trois qui sont étrangères les unes aux autres.

[modifier] Le théorème de Ramsey

Ce résultat est également un cas particulier du théorème de Ramsey, qui indique que pour un nombre entier c donné, et pour des nombres donnés n1, ..., nc, il existe un nombre entier, noté R(n1 ...,nc ; c), tel que si les arêtes d'un graphe complet d'ordre R(n1, ..., nc ; c) sont colorées avec c différentes couleurs, alors il y a un entier i compris entre 1 et c, tel que le graphe contient un sous-graphe complet d'ordre ni dont les arêtes sont toutes de la couleur i. Le cas particulier ci-dessus correspond à c = 2 et n1=n2= 3.

[modifier] Théorèmes principaux

D'autres théorèmes principaux de la théorie de Ramsey sont :

  • Le Théorème de Van der Waerden : Pour tous entiers c et n donnés, il existe un nombre entier V, tel que si les éléments d'une progression arithmétique de V nombres sont colorés avec c différentes couleurs, alors elle doit contenir une progression arithmétique de la longueur n dont les éléments sont tous de la même couleur.
  • Le Théorème de Hales-Jewett : Pour tous entiers n et c donnés, il existe un nombre H tels que si les n × n × n × ... × n cellules d'un cube de dimension H sont colorées avec c couleurs, il doit exister une rangée, une colonne, etc. de longueur n dont les cellules sont toutes de la même couleur. Si par exemple, vous jouez au morpion dans un damier à k dimensions de côté n, avec k suffisamment grand c'est-à-dire avec « beaucoup de directions », la victoire étant attribuée au joueur qui aligne n pions le premier, vous gagnerez immanquablement si vous commencez la partie, même s'il y a un grand nombre de joueurs ou si n est grand.
  • Le théorème de Schur énonce que, pour toute partition de l'ensemble des entiers strictements positifs en un nombre fini c de parties, l'une des parties contient trois entiers x, y, z tels que x + y = z, et plus précisément, qu'il existe un nombre S(c) tel que ce résultat soit vrai pour l'ensemble {1, 2, ..., S(c)}.

[modifier] Voyez également