Méthode du point col

Un article de Wikipédia, l'encyclopédie libre.

En mathématiques, la méthode du point col (ou méthode de la descente rapide) permet d'évaluer le comportement asymptotique d'une intégrale complexe du type :

I(\lambda) = \int_\mathcal{C} f(z) e^{\lambda g(z)} \, dz\,

lorsque \lambda\rightarrow +\infty. \mathcal{C} est un chemin d'intégration du plan complexe. f et g sont deux fonctions analytiques, et on note z = x + iy, g(z) = u(z) + iv(z) = u(x,y) + iv(x,y). Bien que reposant sur des concepts différents, la méthode du point col est généralement considérée comme l'extension de la méthode de la phase stationnaire aux intégrales complexes.

[modifier] Idée générale

L'idée générale de la méthode consiste à déformer le chemin d'intégration grâce au théorème de Cauchy afin d'utiliser un chemin particulier γ, le chemin de descente rapide, sur lequel la partie imaginaire (c-à-d la partie oscillante de l'exponentielle) de la fonction g est constante.


I(\lambda) = \int_\mathcal{C} f(z) e^{\lambda g(z)} \, dz
           =  \int_\mathcal{\gamma} f(z)e^{\lambda u(z)} e^{i \lambda v(z)}  \, dz

L'intégrale peut alors s'évaluer grâce à la méthode de Laplace. En notant zs le point col de la fonction g, c-à-d le point pour lequel \partial g/\partial z(z_s)=0, on a:

[modifier] Références

  • N. Bleistein, R.A. Handelsman, Asymptotic Expansions of Integrals, Dover, 1986 [1975].
  • L.B. Felsen, N. Marcuvitz, Radiation and Scattering of Waves, IEEE-Wiley, 1994 [1972], chap. 4.
  • E.T. Copson, Asymptotic Expansions, Cambridge University Press, 1965.
Autres langues