Ensemble bien ordonné

Un article de Wikipédia, l'encyclopédie libre.

Un ensemble ordonné ( E, ≤ ) est bien ordonné et la relation ≤ est un bon ordre si la condition suivante est satisfaite :

Toute partie non vide de E possède un plus petit élément.

On démontre que tout ensemble bien ordonné est totalement ordonné. En effet, soit (E,\prec) un ensemble bien ordonné, et (x,y)\in E^2. D'après la propriété de bon ordre de E, l'ensemble {x,y} admet un plus petit élément. En d'autres termes : \forall(x,y)\in E^2,\quad x\prec y \text{ ou } y\prec x.

Si de plus l'axiome du choix dépendant (une version faible de l'axiome du choix) est vérifié, cette propriété (être bien ordonné) est équivalente à dire que l'ordre est total et que la relation stricte associée est bien fondée (il n'existe pas de suite infinie strictement décroissante). D'après le théorème de Zermelo, l'axiome du choix dans toute sa force équivaut au fait que tout ensemble peut être bien ordonné, et donc peut être rendu isomorphe à un ordinal.

[modifier] Exemples

  • L'ensemble vide, muni du seul ordre qui y soit possible : ( Ø, Ø ) (c'est le plus petit ordinal)
  • L'ensemble des entiers naturels, muni de l'ordre habituel des entiers : ( \mathbb N, \le_{ \,_\mathbb N} \,) , souvent noté ω dans ce contexte (c'est le plus petit ordinal infini)
  • De manière générale, tout ordinal est, par définition, bien ordonné

[modifier] Subtilités

Soit ( E, ≤ ) est un ensemble bien ordonné non vide. Il a un plus petit élément, et il a ou n'a pas de plus grand élément : l'ensemble des entiers ω, qui a 0 pour plus petit élément, n'en a pas de plus grand mais rien n'empêche de lui en ajouter un — c'est le tout début d'une construction naïve des ordinaux transfinis. Soit α∈E : si α n'est pas le plus grand élément de E, il existe un plus petit β∈E strictement supérieur à α, appelé successeur de α et noté souvent α+1, dont α est le prédécesseur. Un élément de E a au plus un prédécesseur ; le plus petit élément n'en a évidemment pas et c'est le seul cas pour E=ω, mais en général il y a beaucoup d'éléments de E qui n'en ont pas — c'est ce qui fait le charme des ordinaux transfinis. Pensez, pour avoir une petite idée, au dictionnaire de tous les mots finis construits à partir d'un alphabet fini ou infini bien ordonné. Un élément de E ayant un prédécesseur est dit de première espèce, et de deuxième espèce sinon. Cette distinction est souvent utile pour raisonner par récurrence transfinie.