Théorème de Cauchy-Peano-Arzelà

Un article de Wikipédia, l'encyclopédie libre.

Pour les articles homonymes, voir Cauchy.

[modifier] Enoncé

Soient E un Espace de Banach de dimension finie, H \subset E une partie ouverte convexe de E. Soit I = [t0a,t0 + a] un intervalle de \mathbb{R} (t_0\in \mathbb{R},a>0), soit f une fonction continue et bornée de I\times H dans E. Soit M= \sup_{(t,x)\in I\times H} \mid \mid f(t,x)\mid \mid.
Soient x_0\in H et r > 0 tels que B=B(x_0,r) \subset H.
Alors, il existe une solution au problème :
x' = f(t,x)
x(t0) = x0
définie sur l'intervalle [t0c,t0 + c]c=\inf(a,\frac{r}{M}), et à valeurs dans B.

N.B. : Contrairement à ce que permet de conclure le théorème de Cauchy-Lipschitz sous des hypothèses plus restrictives, il n'y a pas unicité ici.

Autres langues