Kronecker Jugendtraum

Un article de Wikipédia, l'encyclopédie libre.

Le théorème de Kronecker-Weber, d'abord annoncé par Kronecker, dont la démonstration fut complétée par Weber et Hilbert, décrit les extension abéliennes du corps des nombres rationnels. Celles-ci sont contenues dans les extensions cyclotomiques, c'est-à-dire les extension engendrées par les racines de l'unité. Du point de vue de l'analyse complexe, on construit les racines de l'unité comme valeurs spéciales de la fonction exponentielle.

Pour ce qui est de décrire les extensions abéliennes d'un corps de nombre général, la théorie du corps de classes apporte la généralisation du volet algébrique de la situation précédente: les extensions abéliennes sont classifiées par leur groupe de normes, qui décrit les sous-groupes d'indice fini du groupe multiplicatif du corps de nombre étudié.

Le Kronecker Jugendtraum, littéralement le rêve de jeunesse de Kronecker, suggère que les extension abéliennes d'un corps de nombres doivent être contenues dans des extensions engendrées par des valeur spéciales de fonctions analytiques.

La théorie de la multiplication complexe répond à cette question pour un corps de nombres K qui est extension quadratique imaginaire du corps des nombres rationnels:

  • Le corps de classe de Hilbert de K est engendré par les invariants j de certaines courbes elliptiques à multiplication complexe par le corps K (celles dont l'anneau d'endomorphisme est l'anneau des entiers algébriques OK de K). Ce sont des valeurs spéciales de la fonction modulaire j aux point du demi-plan de Poincaré qui sont situés dans K.
  • Les extension abéliennes plus générales sont engendrées sur le corps de classes par les coordonnées des points de torsion d'une courbe du type précédent: ce sont les valeurs prises par les fonctions rationnelles sur cette courbe elliptique. Ce sont également les valeurs spéciales prises par les fonctions elliptiques de Weierstrass associés au réseau OK sur les éléments du corps K

Remarquons que si l'on considère l'extension engendrée par les invariants de toutes les courbes elliptiques à multiplication complexe par K, on obtient l'extension abélienne maximale de K à une 2-extension près, à l'exception prés des corps Q(i) et Q(j) engendrés par une racine quatrième et troisième de l'unité.

Autres langues