Géométrie intégrale

Un article de Wikipédia, l'encyclopédie libre.

En mathématiques, le terme géométrie intégrale est utilisés pour désigner un ensemble vaste de résultats sur l'interprêtation géométrique de certains résultats de calcul intégral.

[modifier] Domaines

L'usage traditionnel de ce terme est celui introduit par Santalo et Blaschke. Il provient de la Formule de Crofton permettant d'exprimer la longueur d'une courbe plane comme l'espérance mathématique du nombre d'intersection avec une droite du plan aléatoire. Ici, le terme aléatoire est à prendre suivant des considérations de symétries.

Il existe un espace de lignes du plan, sur lequel le groupe affine du plan agit. Une mesure de probabilité peut munir cet espace, invariante par le groupe des symétries. Si, comme dans ce cas, on ne trouve qu'une unique mesure invariante, cela résoud le problème de formuler précisemment ce que le terme droite aléatoire veut dire; l'espérance mathématiques revient donc à effectuer une intégration avec cette mesure.

On peut alors voir la géométrie intégrale au sens de Santalo, comme l'application de la Théorie des probabilités (comme axiomatisée par Kolmogorov) dans le contexte du programme d'Erlangen de Klein. En effet, cette approche consiste en l'utilisation de mesure invariante sur des espaces homogènes (de préférence compacts) de groupes de Lie; et l'évaluation d'intégrales sur des formes différentielles.

Une application très célèbre est le problème de l'Aiguille de Buffon: faire tomber une aiguille sur un parquet de latte puis calculer la probabilité que celle-ci se trouve sur au moins 2 lattes. Plus généralement, cette approche peut être appliquée à de nombreux processus stochastiques en relation avec des problèmes géométriques.

Un des résulats les plus célèbres de ce domaine est le théorème de Hadwiger.

L'intreprêtation la plus récente du terme de géométrie intégrale est celui de Israel Gelfand. Il s'applique aux transformations intégrales, faisant intervenir la transformée de Radon.

Autres langues