Fonction de Weierstrass

Un article de Wikipédia, l'encyclopédie libre.

Représentation de la fonction de Weierstrass sur l'intervalle [-2,2]. La fonction a un comportement fractal : n'importe quel zoom (par exemple le cercle rouge) ressemble au zoom total.
Représentation de la fonction de Weierstrass sur l'intervalle [-2,2]. La fonction a un comportement fractal : n'importe quel zoom (par exemple le cercle rouge) ressemble au zoom total.

La fonction de Weierstrass est le premier exemple connu d'une fonction qui est continue partout mais qui n'est dérivable à aucun endroit. On la doit à Karl Weierstrass et Leopold Kronecker même s'il semble que la propriété concernant la dérivée fut découverte par Bernhard Riemann en 1861 [1].

Il s'agit en fait d'un groupe de fonctions qui peut être défini comme suit :

f(x)=\sum_{n=0}^\infty a^n\cos(b^n\pi x),

0 < a < 1 et

 ab>1+\frac{3}{2}\pi.

Ce qui rend cette fonction intéressante est ses caractéristiques similaires aux fractales dans le sens où elle a une complexité uniforme et infinie, indépendamment du facteur d'échelle avec lequel on la considère.

L'hypothèse ab > 1 (G.H. Hardy) suffit, mais la preuve est sensiblement plus difficile.

[modifier] Références

  1. Weierstrass Function -- from Wolfram MathWorld