Chiralité (mathématiques)

Un article de Wikipédia, l'encyclopédie libre.

Le concept de la chiralité existe également dans d'autres domaines.

Pour les articles homonymes, voir Chiralité.

En mathématiques, un polyèdre est chiral s'il n'est pas superposable à son image dans un miroir. Un objet chiral et son image miroir sont dits être énantiomorphes. Le mot chiralité est dérivé du grec χειρ (cheir), la main, l'objet chiral le plus familier; le mot énantiomorphe semble être du grec εναντιος (enantios) 'opposé' et μορφη (morphe) 'forme'. Une figure non-chirale est appelée achirale. Si un polyèdre est chiral, il possède deux formes énantiomorphes : une lévogyre (« qui tourne à gauche », en latin laevus : gauche) et une dextrogyre (« qui tourne à droite », en latin dextro : droite), comme les deux cubes adoucis ci-dessous.

Le cube adouci (sens anti-horaire) Le cube adouci (sens horaire)

Sommaire

[modifier] Forme chirale

La chiralité peut être comparée à un simple problème de gants. Tous les enfants ont déjà été confrontés à un problème de chiralité en mettant la main droite dans le gant gauche et inversement. Un gant est un objet chiral car il n'est pas superposable à son image dans un miroir. Tout comme les pieds.

La distribution d'éléments différents dans l'espace, par exemple autour d'un point, peut conduire à des situations non identiques, donc des objets différents. Ainsi les dés à jouer sont des objets chiraux : la règle de construction veut que la somme des faces opposées soit égale à sept. Posons le six sur la face supérieure et par conséquent le un sur la face inférieure, puis le cinq devant donc le deux derrière. Il reste deux façons non équivalentes de terminer : le quatre à gauche et le trois à droite, ou inversement. On obtient deux formes énantiomorphes images l'un de l'autre dans le miroir.

L’hélice (et par extension les cordes/ficelles tournées, pas de vis, tire-bouchons, poignées de porte, etc) et le ruban de Möbius, de même que les tétrominos de forme S et Z du jeu vidéo populaire Tetris, montrent aussi la chiralité, bien que ces derniers soient seulement en deux dimensions.

Beaucoup d’autres objets familiers montrent la même symétrie chirale du corps humain (ou énantiomorphe) — gants, verres, chaussures, jambes d'une paire de bas, ciseaux, guitare, etc. — Une notion de chiralité similaire est considérée en théorie des noeuds, comme expliqué ci-dessous. Ou encore en biochimie pour la conformation et la réplication des protéines et pour expliquer le comportement pathogène et difficile à traiter de certains virions ou de maladies auto-immunes, et en physique subnuclaire pour les phénomènes de spin.

[modifier] Chiralité et groupe de symétrie

Une figure est achirale si et seulement si son groupe de symétrie contient au moins une isométrie de renversement d'orientation. (En géométrie euclidienne, toute isométrie peut être écrite comme v\mapsto Av+b avec une matrice orthogonale A et un vecteur b. Le déterminant de A est alors soit 1 ou -1. Si c'est -1, l'isométrie est un renversement d'orientation, autrement, elle est une conservation d'orientation).

[modifier] Chiralité dans trois dimensions

En trois dimensions, chaque figure qui possède un plan de symétrie ou un centre de symétrie est nécessairement achirale :

  • Un plan de symétrie d'une figure F est un plan P, tel que F est invariant avec l’application (x,y,z)\mapsto(x,y,-z), lorsque P est choisi comme étant le plan x-y du système de coordonnées.
  • Un centre de symétrie d’une figure F est un point C, tel que F est invariant par l’application (x,y,z)\mapsto(-x,-y,-z), lorsque C est choisi comme étant l’origine du système de coordonnées).

Notes:

  • Il existe néanmoins des figures achirales qui manquent de plan et/ou de centre de symétrie.
    1. Un exemple est la figure :
      F_0=\left\{(1,0,0),(0,1,0),(-1,0,0),(0,-1,0),(2,1,1),(-1,2,-1),(-2,-1,1),(1,-2,-1)\right\}
      qui est invariante sous l’isométrie de renversement d’orientation (x,y,z)\mapsto(-y,x,-z) et ainsi achirale, mais elle ne possède ni plan, ni centre de symétrie.
    2. La figure
      F_1=\left\{(1,0,0),(-1,0,0),(0,2,0),(0,-2,0),(1,1,1),(-1,-1,-1)\right\}
      est aussi achirale, comme l’origine est un centre de symétrie, mais elle manque de plan de symétrie.
  • Les figures achirales peuvent aussi avoir un axe de centre.

[modifier] Chiralité en deux dimensions

En deux dimensions, chaque figure qui possède un axe de symétrie est achirale, et il peut être montré que chaque figure achirale bornée doit avoir un axe de symétrie. (Un axe de symétrie d'une figure F est une droite L, tel que F est invariante par l'application (x,y)\mapsto(x,-y), lorsque L est choisie comme étant l'axe x du système de coordonnées).

Considérons le motif suivant :

< < < < < < < < < <
 < < < < < < < < < <

Cette figure est chirale, elle n’est pas identique à son image miroir suivant un axe ou l’autre :

 < < < < < < < < < <
< < < < < < < < < <
 > > > > > > > > > >
> > > > > > > > > >

Mais, si on prolonge le motif dans deux directions vers l'infini, on récupère une figure achirale (non-bornée) qui ne possède pas d'axe de symétrie. Son groupe de symétrie est un groupe de frise engendré par une anti-translation.

[modifier] Théorie des nœuds

Un nœud est appelé achiral (ou amphichiral) s’il peut être déformé continûment en son image miroir, autrement, il est appelé chiral. Par example, le non-nœud et le nœud de Listing sont achiraux, alors que le nœud de trèfle est chiral.

[modifier] Voir aussi

Autres langues