Axiome de l'infini

Un article de Wikipédia, l'encyclopédie libre.

En théorie axiomatique des ensembles et dans les branches de la logique, des mathématiques, et de l'informatique, l'axiome de l'infini est l'un des axiomes de la théorie des ensembles de Zermelo-Fraenkel. Il énonce qu'il existe un ensemble infini, plus précisément il énonce qu'il existe un ensemble qui contient les entiers naturels, plus précisément une représentation de ceux-ci.

Sommaire

[modifier] Énoncé de l'axiome

Il existe plusieurs variantes de l'axiome, suivant par exemple que l'on dispose de la notion d'ordinal ou non. Une façon très intuitive serait de dire qu'un ensemble qui représente celui des entiers naturels existe. En fait on a juste besoin de montrer qu'un ensemble ayant pour éléments des représentations des entiers naturels (et éventuellement d'autres) existe. Pour représenter les entiers naturels on utilise un 0 et une opération successeur. Suivant les idées de von Neumann, on va représenter 0 par l'ensemble vide (qui a 0 éléments) et le successeur par la fonction xx ∪ {x}, qui à un ensemble associe celui obtenu en ajoutant l'ensemble de départ comme élément (et qui vérifie intuitivement que si x a n éléments, alors x ∪ {x} en a n +1). L'existence de l'ensemble vide est assurée par un axiome ad hoc, ou par d'autres axiomes de la théorie. Pour un ensemble x donné, on peut former le singleton {x} par l'axiome de la paire, et la réunion x ∪ {x} par l'axiome de la réunion et à nouveau l'axiome de la paire.

On a évidemment que le successeur de tout ensemble est non vide : pour tout ensemble x, x ∪ {x} ≠ ∅. On montrera ensuite que, sur les entiers au moins, la fonction successeur est bien injective, ce qui assurera, avec la précédente propriété, qu'un ensemble qui contient 0 et le successeur de chacun de ses éléments contient bien une copie des entiers, et donc est infini au sens intuitif. On prendra d'ailleurs cette représentation comme définition des entiers en théorie des ensembles.

L'axiome s'écrit donc :

Il existe un ensemble auquel appartient l'ensemble vide et qui est clos par application du successeur xx ∪ {x},

c'est-à-dire dans le langage formel de la théorie des ensembles :

A [∅ ∈ A et ∀ x (xAx ∪ {x} ∈ A)]

à noter que ∅ ∈ A est juste une abréviation pour par exemple ∃ y[(∀ z zy) et yA], et que x ∪ {x} ∈ A est une abréviation pour ∃ y{(∀ z [zy ⇔ (zx ou z = x)]) et yA} c'est-à-dire que l'axiome s'énonce bien dans le langage de la théorie des ensembles : le calcul des prédicats du premier ordre égalitaire avec « ∈ » pour seul symbole non logique.

[modifier] L'ensemble des entiers naturels

Dès que l'on dispose des axiomes de l'ensemble vide, de la paire, et de la réunion, l'ensemble A dont on a affirmé l'existence contient pour chaque entier naturel un représentant, que l'on va prendre comme définition en théorie des ensembles. Par exemple 1 étant successeur de 0, et le singleton d'élément l'ensemble vide (c'est-à-dire 0) :

1 = 0 ∪ {0} = ∅ ∪ {∅} = {∅} = {0}.

De même, 2 en tant le successeur de 1, est la paire {0,1} :

2 = 1 ∪ {1} = {0} ∪ {1} = {∅, {∅}} = {0,1},

et ainsi de suite. Une conséquence de cette définition est que chaque nombre entier est égal à l'ensemble de tous les nombres entiers qui le précèdent. Ainsi l'axiome affirme essentiellement qu’il existe un ensemble contenant tous les nombres entiers naturels.

L'existence de chacun de ces entiers est assurée sans axiome de l'infini, mais on utilise celui-ci pour montrer que l'ensemble des entiers naturels existe. On peut former en effet un ensemble, noté ω en théorie des ensembles, qui est l'intersection de tous les ensembles contenant 0 et clos par successeur (c'est-à-dire le plus petit au sens de l'inclusion des ensembles contenant 0 et clos par successeur). Pour que cette définition soit correcte, il faut intuitivement que la classe des ensembles contenant 0 et clos par successeur soit non vide, ce qu'assure l'axiome de l'infini. Plus formellement l'existence de ω est assurée par le schéma d'axiomes de compréhension et son unicité par l'axiome d'extensionnalité. En effet, notons Cl(Y) pour « ∅ ∈ Y et ∀ y (yYy ∪ {y} ∈ Y) », c'est-à-dire « Y est clos par successeur et 0 lui appartient », et soit A un ensemble vérifiant Cl(A) dont l'existence est assurée par l'axiome de l'infini, alors :

ω = { xA | ∀ Y(Cl(Y) ⇒ xY) } (= { x | ∀ Y(Cl(Y) ⇒ xY) }).

La définition même de l'ensemble ω donne un énoncé du principe de récurrence sur les entiers : tout ensemble à qui 0 appartient et qui est clos par successeur est un sur-ensemble de ω. On peut en donner un énoncé un peu plus familier mais équivalent en théorie des ensembles par le schéma de compréhension, on note x+ le successeur de x, on a alors pour une propriété arbitraire exprimée dans le langage de la théorie des ensembles par la formule P x a1ak (pas d'autre variable libre) :

a1, … ,ak{ [ P 0 a1ak et ∀ y ∈ ω(P y a1akP y+ a1ak)] ⇒ ∀ x ∈ ω P x a1ak }
(toute propriété vraie en 0 et qui passe au successeur sur les entiers est vraie pour tous les entiers).

La récurrence est valide pour toute propriété exprimée dans le langage de la théorie des ensemble : ce n'est pas anodin, cela fait de cette récurrence une propriété beaucoup plus forte que la récurrence de l'arithmétique de Peano (comme théorie du premier ordre), le langage de la théorie des ensembles étant strictement plus expressif que celui de l'arithmétique de Peano.

[modifier] Indépendance de l'axiome de l'infini

Dans la théorie ZFC, si on omet l'axiome de l'infini, la collection des entiers naturels peut être une classe propre, c'est-à-dire que l'axiome de l'infini et bien nécessaire pour l'existence de ω. En effet on montre que dans un univers de la théorie des ensembles, Vω (voir axiome de fondation), la classe des ensembles héréditairement finis (les ensembles finis dont les éléments sont des ensembles finis, et ainsi de suite), est un modèle de tous les axiomes de ZFC sauf l'axiome de l'infini. En effet dans ce cas tous les ordinaux sont des entiers, or la classe des ordinaux est forcément une classe propre (voir paradoxe de Burali-Forti).

Ce modèle montre donc également que l'axiome de l'infini est indépendant des autres axiomes de ZFC, bien-sûr à supposer que ZFC soit une théorie cohérente.

[modifier] Bibliographie